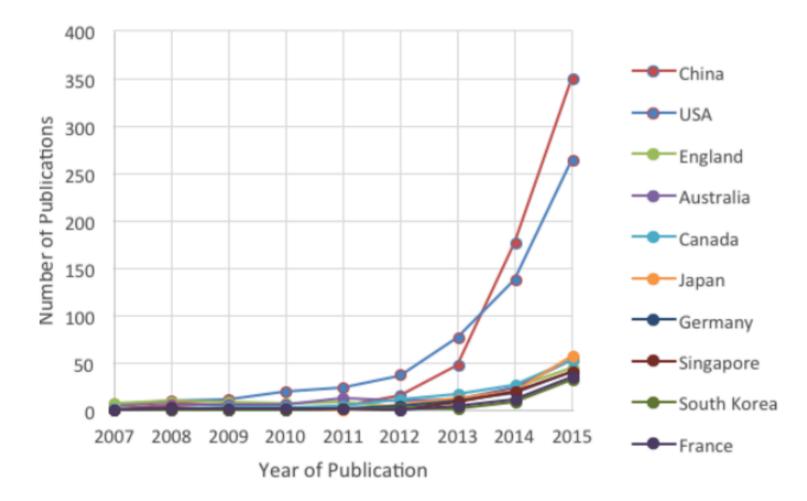
Deep Learning – Neural Machine Translation

Hassan Sajjad Qatar Computing Research Institute, Hamad Bin Khalifa University, Qatar

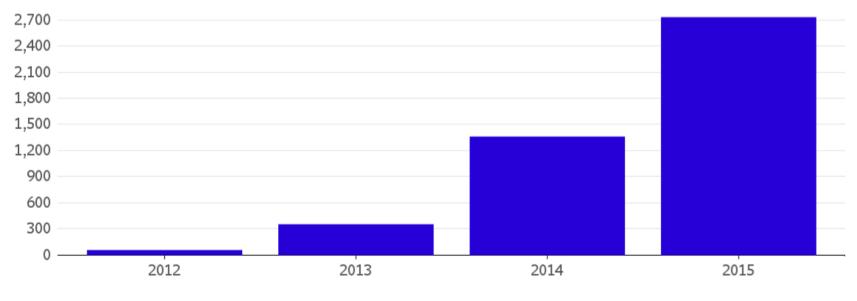
Research Community on Deep Learning



Deep Learning The Past Present and Future of Artificial Intelligence by Lukas Masuch

Artificial Intelligence at Google

Number of software projects within Google that uses a key AI technology, called Deep Learning.



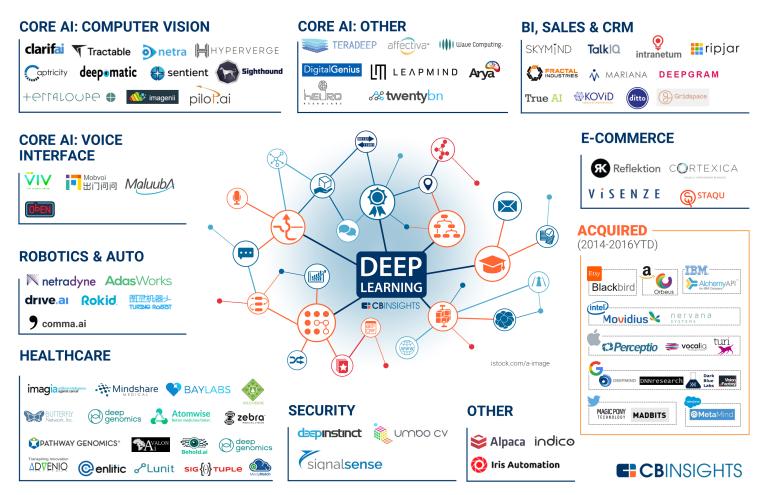
Source: Google

Note: 2015 data does not incorporate data from Q4

Bloomberg 💵

Deep Learning Startups

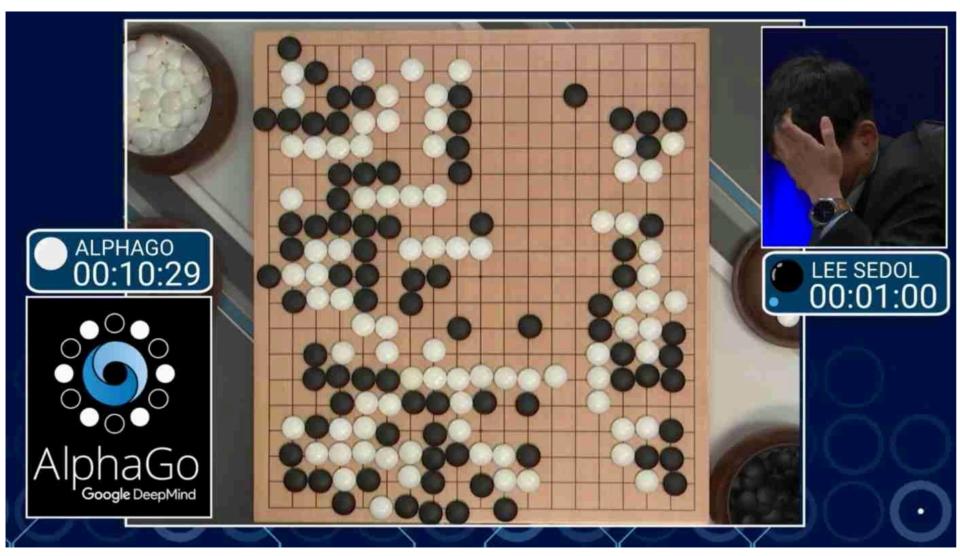
60+ STARTUPS USING DEEP LEARNING



https://www.cbinsights.com/blog/deep-learning-ai-startups-market-map-company-list/

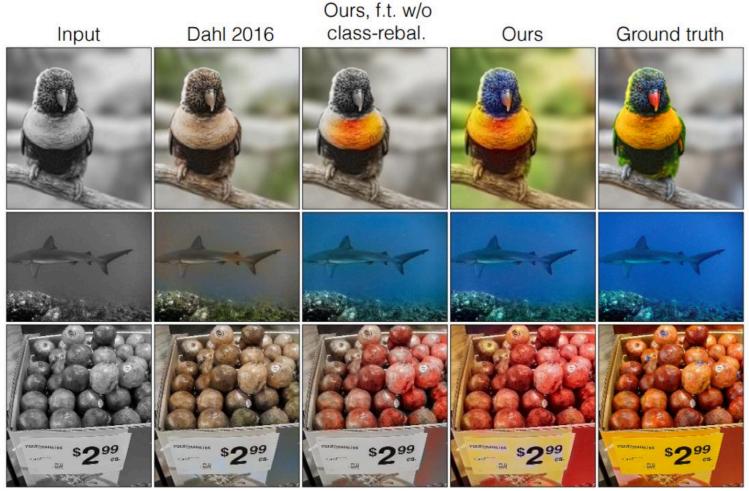
A Few Applications of Deep Learning

Game of Go: 4:1



Deep learning and the state of AI / 2016 by Grigory Sapunov

Image Colorization



http://richzhang.github.io/colorization/

Image Synthesis

Input content

Gatys et al

Ours

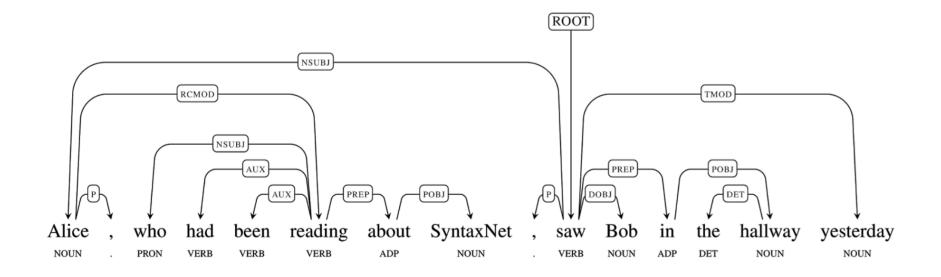
Combining Markov Random Fields and Convolutional Neural Networks for Image Synthesis

Synthesizing Painting

a) Original painting, b) Semantic annotation, c) Desired painting, d) Output

Semantic Style Transfer and Turning Two-Bit Doodles into Fine Artwork (https://arxiv.org/pdf/1603.01768v1.pdf)

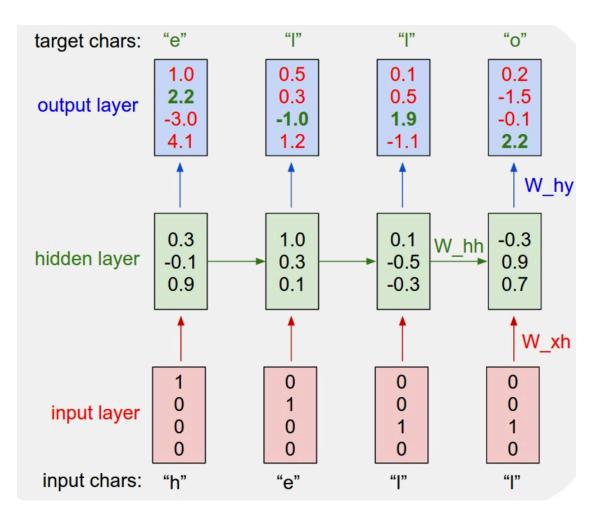
NLP: Syntax Parsing



SyntaxNet (Parsey McParseface) tags each word with a part-of-speech tag, and it determines the syntactic relationships between words in the sentence with an 94% accuracy compared to a human performance at 96%.

Deep Learning The Past Present and Future of Artificial Intelligence by Lukas Masuch

Text Generation



Learn to spell words using Recurrent Neural Network

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Text Generation

Naturalism and decision for the majority of Arab countries' capitalide was grounded by the Irish language by [[John Clair]], [[An Imperial Japanese Revolt]], associated with Guangzham's sovereignty. His generals were the powerful ruler of the Portugal in the [[Protestant Immineners]], which could be said to be directly in Cantonese Communication, which followed a ceremony and set inspired prison, training. The emperor travelled back to [[Antioch, Perth, October 25 21]] to note, the Kingdom of Costa Rica, unsuccessful fashioned the [[Thrales]], [[Cynth's Dajoard]], known in western [[Scotland]], near Italy to the conquest of India with the conflict. Copyright was the succession of independence in the slop of Syrian influence that was a famous German movement based on a more popular servicious, non-doctrinal and sexual power post. Many governments recognize the military housing of the [[Civil Liberalization and Infantry Resolution 265 National Party in Hungary]], that is sympathetic to be to the [[Punjab Resolution]] (PJS)[http://www.humah.yahoo.com/guardian. cfm/7754800786d17551963s89.htm Official economics Adjoint for the Nazism, Montgomery was swear to advance to the resources for those Socialism's rule, was starting to signing a major tripad of aid exile.]]

Trained on structured Wikipedia markdown. Network learns correct syntactic structure

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Image Captioning

"man in black shirt is playing guitar."

"construction worker in orange safety vest is working on road."

"two young girls are playing with lego toy."

"girl in pink dress is jumping in

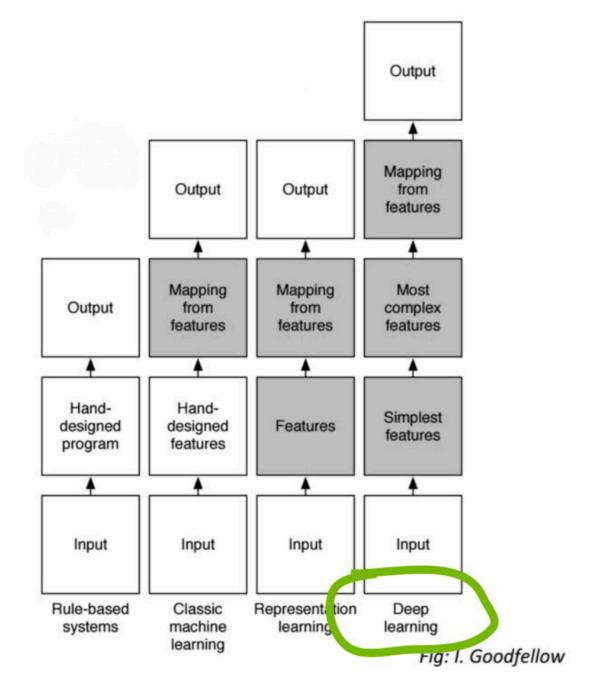
"black and white dog jumps over

"young girl in pink shirt is

http://cs.stanford.edu/people/karpathy/deepimagesent/

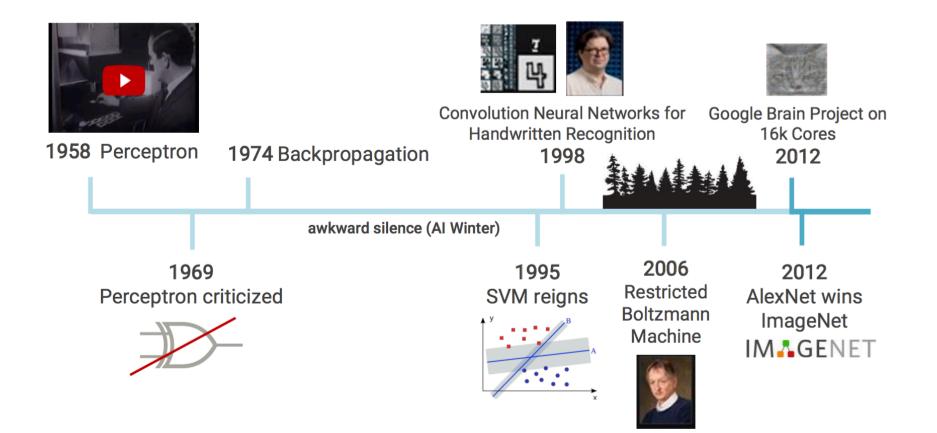
Deep Learning

- A multi-layer neural network
- It learns from experience
- It maps input to a continuous space representation
- It's effective in learning relationships and patterns



Deep learning and the state of AI / 2016 by Grigory Sapunov

Brief History



Deep Learning The Past Present and Future of Artificial Intelligence by Lukas Masuch

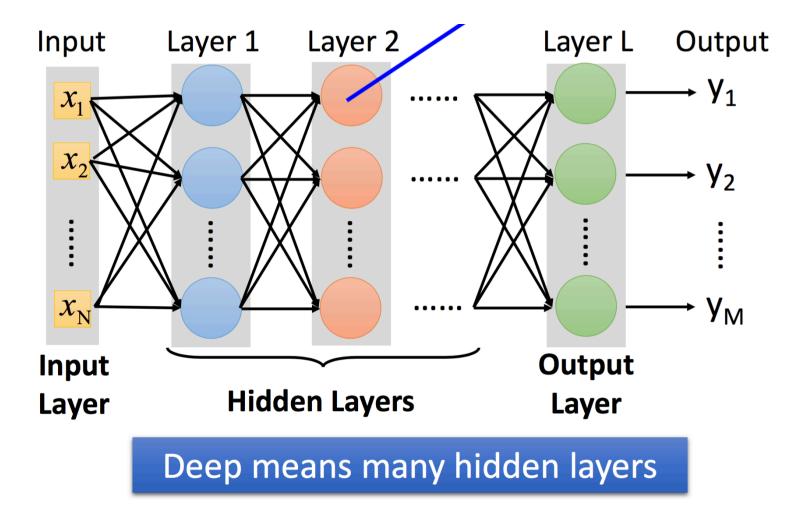
What has Changed?

• Computational power

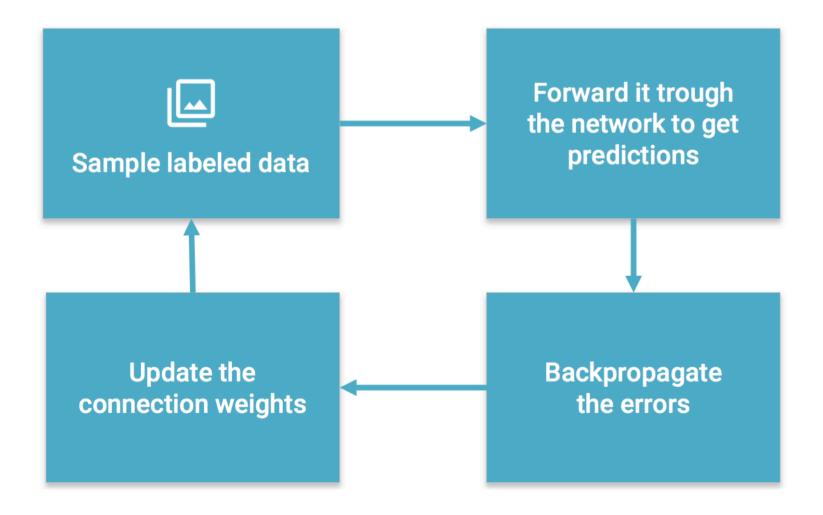
• Big Data

Deep Learning The Past Present and Future of Artificial Intelligence by Lukas Masuch

Fully Connected Neural Network



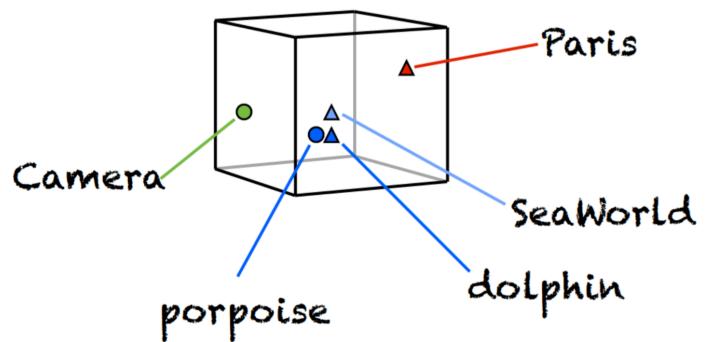
Neural Network Training



Deep Learning The Past Present and Future of Artificial Intelligence by Lukas Masuch

Word Embedding

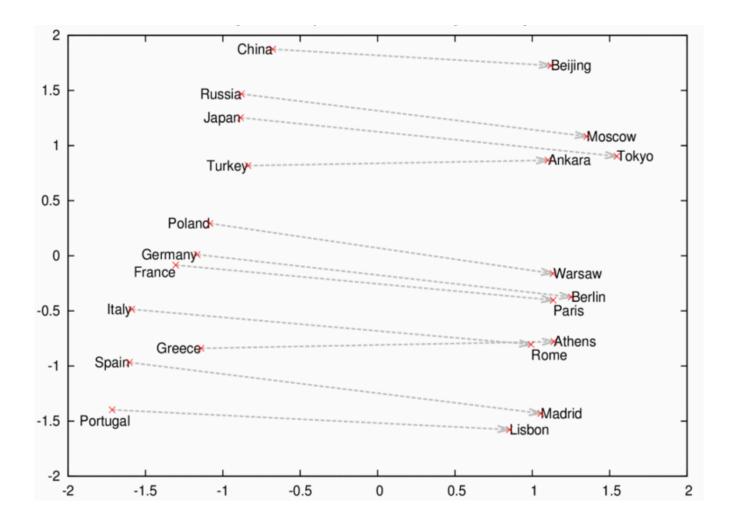
- Turn textual data into high dimensional vector representation
- Group semantically similar data in a vector space



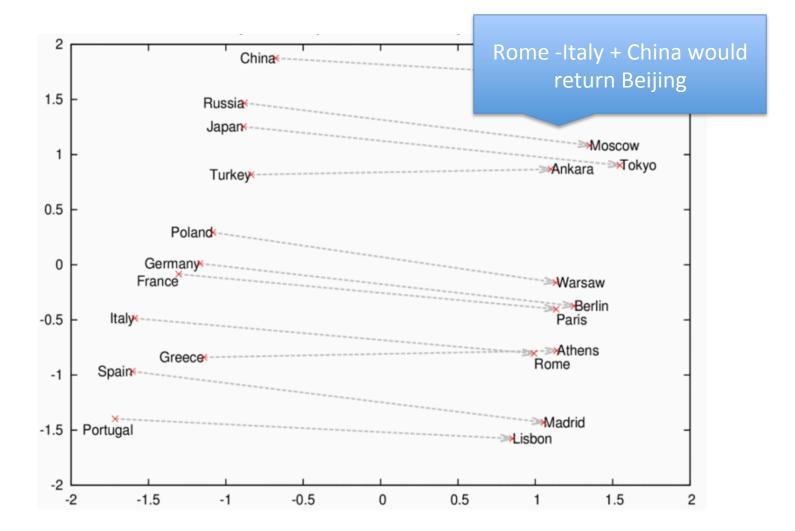
Deep Learning The Past Present and Future of Artificial Intelligence by Lukas Masuch

• A two-layer neural net

Group vectors of similar words together into a vector space



https://deeplearning4j.org/word2vec#embed

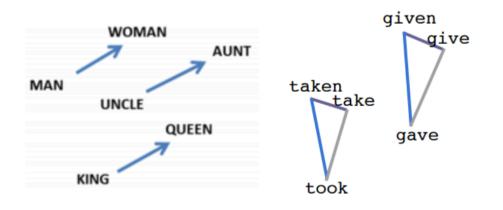


https://deeplearning4j.org/word2vec#embed

Semantically-related clusters

FRANCE	JESUS	XBOX	REDDISH	SCRATCHED	MEGABITS
AUSTRIA	GOD	AMIGA	GREENISH	NAILED	OCTETS
BELGIUM	SATI	PLAYSTATION	BLUISH	SMASHED	MB/S
GERMANY	CHRIST	MSX	PINKISH	PUNCHED	$_{\rm BIT/S}$
ITALY	SATAN	IPOD	PURPLISH	POPPED	BAUD
GREECE	KALI	\mathbf{SEGA}	BROWNISH	CRIMPED	CARATS
SWEDEN	INDRA	PSNUMBER	GREYISH	SCRAPED	KBIT/S
NORWAY	VISHNU	HD	GRAYISH	SCREWED	MEGAHERTZ
EUROPE	ANANDA	DREAMCAST	WHITISH	SECTIONED	MEGAPIXELS
HUNGARY	PARVATI	GEFORCE	SILVERY	SLASHED	GBIT/S
SWITZERLAND	GRACE	CAPCOM	YELLOWISH	RIPPED	AMPERES

Learning relationships from data



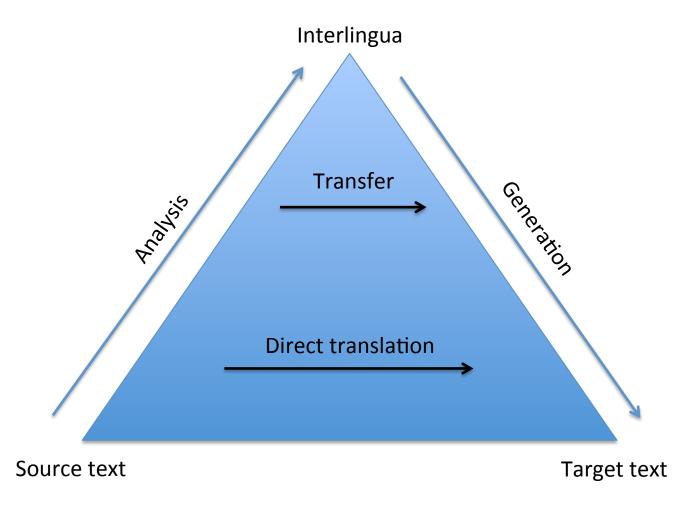
Woman – Man ≈ Aunt - *Uncle* King - Male + Female ≈ *Queen* Human - Animal ≈ *Ethics*

Variants of Neural Networks

- Convolutional Neural Network (CNN)
 mainly used in image processing
- Recurrent Neural Network (RNN)
 - sequence to sequence learning
 - language modeling

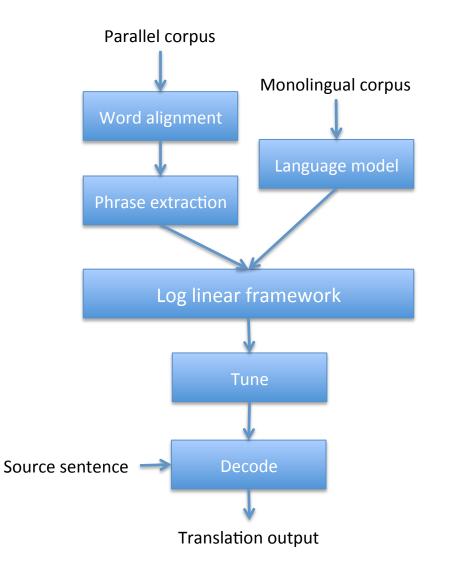
MACHINE TRANSLATION PARADIGM SHIFT

Machine Translation Pyramid

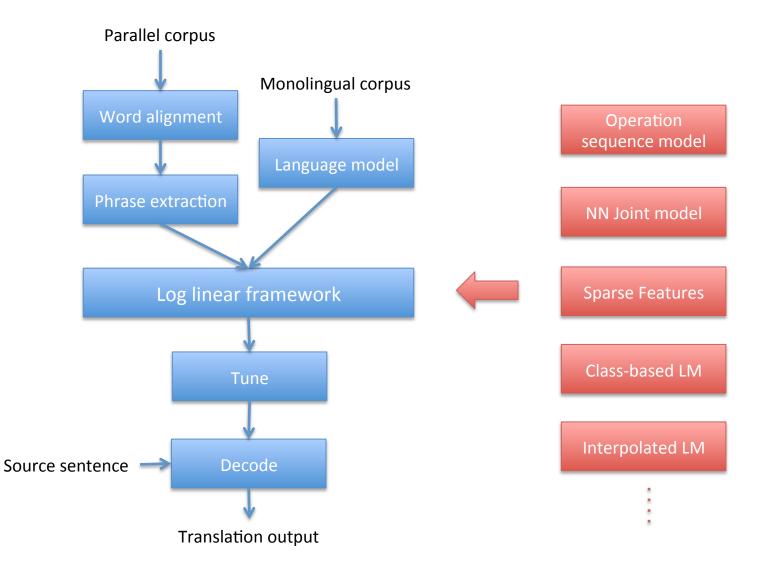


Bernad Vauquois' pyramid

Statistical Machine Translation



Statistical Machine Translation

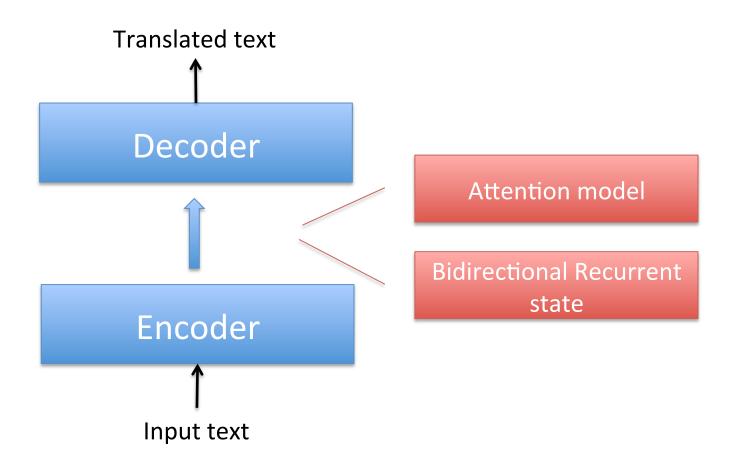


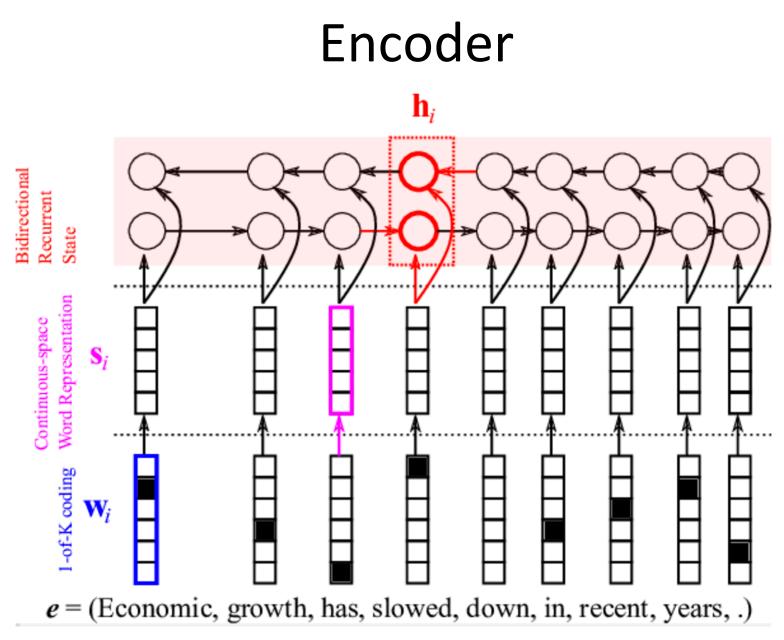
Other Variations

• Syntax-based machine translation

- Language dependent processing
 - pre-reordering of German
 - Arabic morphological segmentation
 - Urdu word segmentation

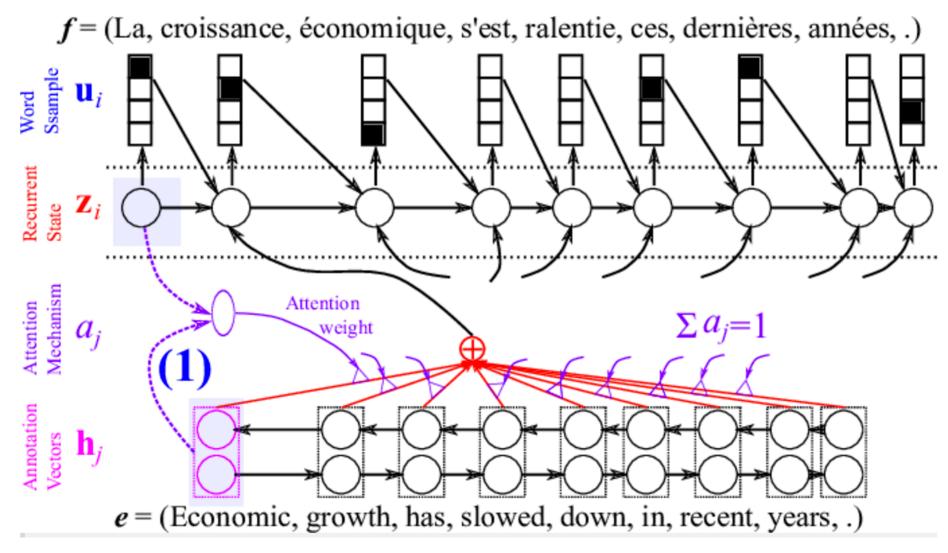
Neural Machine Translation





https://devblogs.nvidia.com/parallelforall/introduction-neural-machine-translation-gpus-part-3/

Decoder



Task Overview

• Multi-domain parallel corpus

Parallel Corpus	Token (en)
TED (Cettolo et al. 2014)	4.7M
QED (Guzma´n et al. 2013)	1.6M
UN (Ziemski et al. 2016)	489M
OPUS (Lison et al. 2016)	184M

- Monolingual corpus
 - 287M sentences (WMT 2013)
 - target side of available parallel corpus

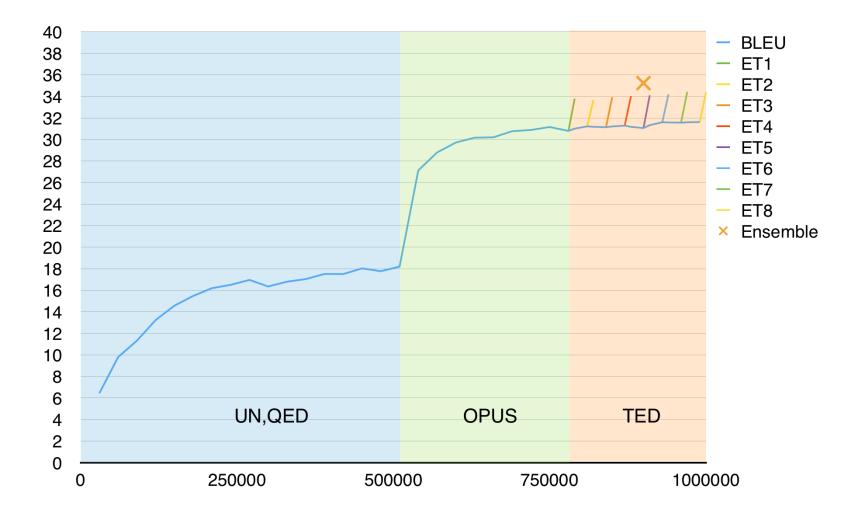
Task Overview

- Evaluation
 - avg. BLEU score on IWSLT test11-14

Results: Phrase-based MT

Train	Avg. BLEU	Description
TED (baseline)	28.6	
TED + QED + UN	27.3 (-1.3)	Concatenation
TED + Back-off PT(QED,UN)	29.1 (+0.5)	
TED + MML (QED,UN)	29.2 (+0.6)	
TED + MML (QED,UN) + OPUS	30.4 (+1.8)	
Interpolated LM (80GB)	30.9 (+2.3)	
Interpolated OSM	31.5 (+2.9)	
NNJM	32.1 (+3.5)	Train on concatenation
NNJM-UN	31.9 (+3.3)	Train on UN, fine tune on TED
NNJM-Opus	32.3 (+3.7)	Train on OPUS, fine tune on TED
Class-based LM	32.4 (+3.8)	
Drop-OOV	32.6 (+4.0)	
Transliteration	32.5 (+3.9)	

Neural MT Lifeline



Neural MT

- Generalize well
- More data is better
 be patient with training
- Online training

 simple adaptation
 commercially viable
- Small model size

NMT – Morphological Segmentation

• Can NMT resolve the bottleneck of language dependent pre-processing?

- For Arabic, morphology aware segmentation
 - important to achieve good quality translations

Arabic Segmentation

- Alternates?
 - byte pair encoding
 - frequency-based model
 - iterative bottom-up character merging
 - single hyper-parameter to control vocabulary size
 - CNN-based word embedding
 - character-based model

Segmentation Type	Avg. BLEU	Description
No segmentation	25.55	word-to-word training

Segmentation Type	Avg. BLEU	Description
No segmentation	25.55	word-to-word training
Morphological segmentation	30.65	MADA segmented

Segmentation Type	Avg. BLEU	Description
No segmentation	25.55	word-to-word training
Morphological segmentation	30.65	MADA segmented
BPE-to-word model	29.12	15000 merge operations
BPE-to-BPE model	29.41	15000 merge operations

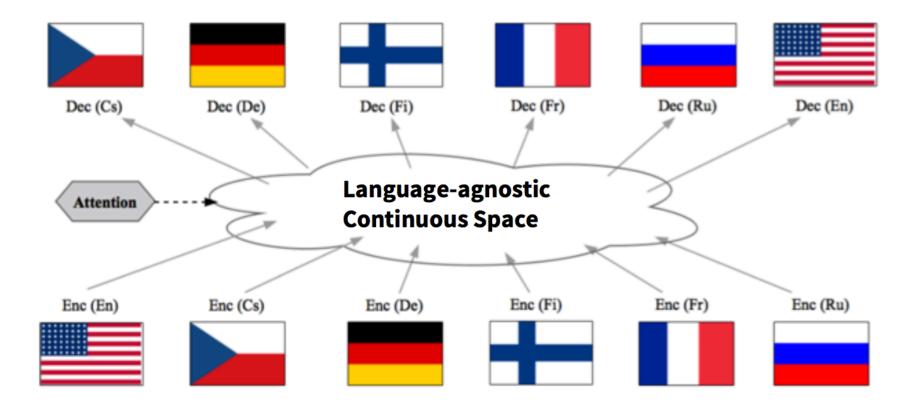
Segmentation Type	Avg. BLEU	Description
No segmentation	25.55	word-to-word training
Morphological segmentation	30.65	MADA segmented
BPE-to-word model	29.12	15000 merge operations
BPE-to-BPE model	29.41	15000 merge operations
charCNN-to-word model	29.74	source character CNN to target words
charCNN-to-char model	30.28	source character CNN to target characters
character-to-word model	30.41	

Training Time

No.	Segmentation Type	Avg. BLEU	Training Time/ epoch
1	No segmentation	25.55	2h12m
2	Morphological segmentation	30.65	2h47m
3	BPE-to-word model	29.12	2h12m
4	BPE-to-BPE model	29.41	1h16m
5	charCNN-to-word model	29.74	2h48m
6	charCNN-to-char model	30.28	3h54m
7	character-to-word model	30.41	4h53m

Morphological segmentation ≈ charCNN-to-word but losing in BLEU by 0.9 points

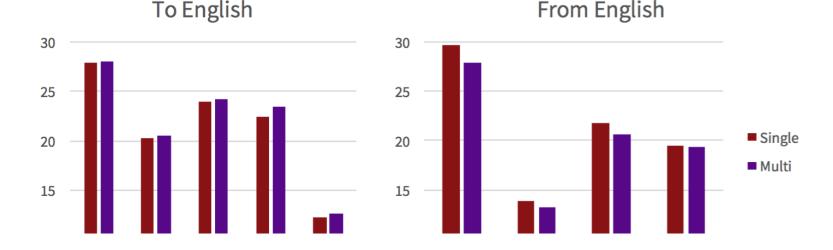
Multi-lingual Translation



Multi-lingual Translation

10 language pair-directions

- En \rightarrow {Fr, Cs, De, Ru, Fi} + {Fr, Cs, De, Ru, Fi} \rightarrow En
- 60+ million bilingual sentence pairs
- Comparable to 10 single-pair models



Low Resource Translation

- Low-resource translation
 - Positive language transfer from high-resource to low-resource language pair-directions

	# Symbols		# Sentence		;
	# En	Other	Train	Dev	Test
En-Uz	1.361m	1.186m	73.66k	948	882
🏾 🖉 En-Es	1.361m 908.1m	924.9m	34.71m	3003	3000
* * En-Fr	1.837b	1.911b	65.77m	3003	3000

Low Resource Translation

Uz-En: 6.45

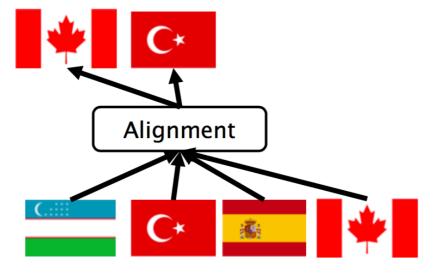
Uz-En + Tr-En: 9.34

Uz-En + Tr-En + Es-En: 10.34

Uz-En + Tr-En + Es-En + En-Tr: 9.41

Ensemble: 12.99

- 3x Uz-En + Tr-En + Es-En
- 3x Uz-En + Tr-En + Es-En + En-Tr



Short Comings

Problem of interpretability

not easy to explain what is happing

- Hard to incorporate linguistic information
- Fewer control over the model
- Special hardware requirement (GPU)

Useful links

- NMT implementations
 - Nematus (<u>https://github.com/rsennrich/nematus</u>)
 - Theano-based
 - backed by Edinburgh University
 - seq2seq-attn (https://github.com/harvardnlp/seq2seq-attn)
 - Torch-based
 - backed by Harvard plus Systran is supporting
 - Dynet (<u>https://github.com/clab/dynet</u>)
 - C++
 - backed by CMU
 - Tensor flow (sequence to sequence)

Useful Links

- <u>NMT Tutorial https://devblogs.nvidia.com/parallelforall/</u> introduction-neural-machine-translation-gpus-part-1/
- RNN character-level examples
 - http://karpathy.github.io/2015/05/21/rnn-effectiveness/

THANKS